Formation and Isolation of the Disulphide Dication of 1,5-Dithiacyclo-octane in the Reactions of the Corresponding S-Oxide and S-(N-tosylimide) in Concentrated Sulphuric Acid

Naomichi Furukawa,* Akira Kawada, and Tsutomu Kawai

Department of Chemistry, The University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 305, Japan

The disulphide dication of 1,5-dithiacyclo-octane was generated in the reaction of the corresponding S-oxide and S-(N-tosylimide) with conc. H₂SO₄ and isolated in crystalline form.

The intermediacy of cyclic disulphide dications has been confirmed kinetically by Musker et al. in either the reduction of the corresponding S-oxide with HI or the oxidation of the bis-sulphide with I2 in acidic aqueous media. They have isolated the dications of several cyclic bis-sulphides by treating the corresponding sulphides with NOBF₄ (2 equiv.) in MeCN.^{2,3} Numata and Oae have postulated the formation of the dithietanium dication on dissolution of o-methylthiophenyl phenyl sulphoxide in conc. H₂SO₄.⁴ Treatment of a cyclic bis-sulphide S-oxide having a conformationally feasible structure for intramolecular S-S bond interaction with conc. H₂SO₄ should lead to the corresponding dication. We have accordingly dissolved dithiacyclo-octane S-oxide (1a) or S-(Ntosylimide) (2a) in conc. D₂SO₄, and detected the formation of the corresponding disulphide dication (3) by ¹H and ¹³C n.m.r. spectroscopy; the bis(hydrogensulphate) salt (5) of this dication could actually be isolated. The e.s.r. spectrum of the S-oxide in conc. H₂SO₄ solution showed signals due to the corresponding cation radical (4).

1,5-Dithiacyclo-octane S-oxide (1a), the S-(N-tosylimide) (sulphilimine) (2a),† [m.p. 175—178 °C; v_{max} (KBr) 1270, 1140, 1090, and 1000 cm⁻¹] and the corresponding 2,2,8,8-tetradeuteriated derivatives (1b) and (2b) were synthesized.‡ When (1a) was dissolved in conc. H₂SO₄ (96%), the solution became slightly yellow. The ¹H and ¹³C n.m.r. spectra of D₂SO₄ (98%) solutions of (1a) were recorded immediately; the signals observed in CDCl₃ for (1a) disappeared and two sets of new peaks appeared in a 2:1 ratio.§ These spectra did not change for 24 h at room temperature; the data are in Table 1.

These results indicate that (1a) is converted into the symmetrical intermediate dication (3).¶ Treatment of the H_2SO_4 solution of (1a) with H_2O and work-up led to the starting S-oxide (1a) in 72% yield. Similar treatment of (1b) in D_2SO_4 led to similar changes in the ¹H and ¹³C n.m.r. spectra,

except that the peak ratio was 1:1. Hydrolysis of the H_2SO_4 solution of (**1b**) led to 76% recovery of the S-oxide, the 1H n.m.r. spectra of which indicate that it is a 1:1 mixture of the 2,2,8,8- and 4,4,6,6-tetradeuteriated S-oxides (**1b**) and (**1c**) and also that no H–D exchange with the solvent H_2SO_4 took place during the reaction (Scheme 1). The solution of (**3**) in H_2SO_4 was poured into ice-cooled anhydrous diethyl ether and the salt (**5**) was obtained as white hygroscopic crystals, m.p. 66—69 °C.†** Hydrolysis of the salt (**5**) gave the starting S-oxide (**1a**).

In general, N-tosylsulphilimines (>S=NSO₂C₆H₄Me-p) undergo cleavage of the N-SO₂(C₆H₄Me-p) bond to afford the

⁽¹a) X = 0(3) (1b) $X = O(2,2,8,8^{-2}H_{\lambda})$ (5), 2HSO4 T (1c) $X = O(4,4,6,6^{-2}H_A)$ Crystalline salt (2a) $X = NSO_2C_6H_4Me - p$ (2b) $X = NSO_2C_6H_4Me^{-p}$ $(2.2.8.8 - {}^{2}H_{\lambda})$ (4) (1b)(2b) (76°/₀) (1b)(1c)Scheme 1

[†] Satisfactory elemental analyses were obtained.

[‡] Compound (1a) did not undergo H–D exchange in NaOD–D₂Otetrahydrofuran at 50 °C, so it was necessary to heat the solution under reflux for 20 h at 100 °C under N₂. In contrast, H–D exchange of (2a) could be carried out at 70 °C for 6 h; deuterium content: (1a), 100%; (2a), 81%.

[§] Musker *et al.*² reported that the dication $(BF_4)_2$ salt has broad ¹H n.m.r. signals at δ *ca.* 2—4 in CD₃CN, while the ¹³C n.m.r. spectra correspond roughly with our results. The broadening of the ¹H n.m.r. spectrum observed by Musker *et al.* is probably due to the MeCN solvent which may interact with the S⁺ unit in (3), while D₂SO₄ does not lead to such a solvation effect, resulting in sharp ¹H n.m.r. spectra.

[¶] The solution of (1a) in H_2SO_4 showed similar e.s.r. spectra to those reported by Musker (*Acc. Chem. Res.*, 1982, 13, 200). We assume that the intermediate in this reaction is the dication (3) with equilibrium formation of the cation radical (4) in low concentration. This may explain the n.m.r. spectra.

^{**} The salt (5) is very hygroscopic, becoming a liquid on exposure to air. The H_2O content thus depends on the conditions employed for the analyses.

Table 1. N.m.r. data for (1)—(3) (dithiacyclo-octane ring atoms only).^a

- (1a)^h 3.23—3.04 [m, 4H, -S(O)CH₂-], 2.76—2.54 (m, 4H, -SCH₂-), and 2.43—2.18 (m, 4H, -CH₂CH₂-CH₂-)
- (1b) $2.76-2.55 \text{ (m, 4H, -SCH}_2-) \text{ and } 2.45-2.19 \text{ (br. m, 4H, -CH}_2\text{CH}_2\text{CH}_2-)}$
- (2a)^c 3.41–3.22 [m, 4H, $-S(NSO_2C_6H_4Me-p)CH_2-$], 2.78–2.54 (m, 4H, $-SCH_2-$), and 2.39–2.17 (m, 4H, $-CH_2CH_2CH_2-$)
- (2b) 2.77-2.53 (m, 4H, $-SCH_2-$) and 2.45-2.19 (br. m, 4H, $-CH_2CH_2CH_2-$)
- (3)^d 4.32—3.40 (br. m, 8H, $-S^+CH_2$ –) and 3.32—2.10 (br. m, 4H, $-CH_2CH_2CH_2$ –)

 a 1H and ^{13}C data for (1) and (2) in CDCl $_3$, relative to Me $_4$ Si; data for (3) in D $_2$ SO $_4$ relative to sodium 4,4-dimethyl-4-silapentanesulphonate (DSS). b ^{13}C : δ 56.6, 30.2, and 23.7. c ^{13}C : δ 50.8, 30.4, and 25.3. d ^{13}C : δ 56.3 and 38.6.

corresponding N-unsubstituted sulphilimines on treatment with conc. H_2SO_4 .⁵ However, on dissolution of the sulphilimine (2a) in conc. D_2SO_4 , the ¹H n.m.r. chemical shifts observed agreed well with those expected for a 1:1 mixture of (3) and toluene-p-sulphonamide. When this H_2SO_4 solution was treated in the same way as the solution of (1a), the salt (5) was obtained; treatment of (5) with aqueous alkali solution

gave (1a) quantitatively. The tetradeuteriated compound (2b) gave similar results to (1b).

The present results thus provide a simple and convenient method of preparation of a new class of organosulphur compound.

Received, 12th April 1984; Com. 529

References

- 1 J. T. Doi and W. K. Musker, J. Am. Chem. Soc., 1981, 103, 1159, and references cited therein.
- 2 W. K. Musker, T. L. Wolford, and P. B. Roush, J. Am. Chem. Soc., 1978, 100, 6416.
- 3 On treatment with 1 equiv. of NOBF₄ the corresponding cation radical was detected by e.s.r. spectroscopy.² E.s.r. spectra of disulphide cation radicals have been reported: P. G. Gilbert, D. K. Hodgeman, and R. O. C. Norman. *J. Chem. Soc.*, *Perkin Trans.* 2, 1973, 1748; D. Bahnemann and K.-D. Asmus, *J. Chem. Soc.*, *Chem. Commun.*, 1975, 238; *J. Chem. Soc.*, *Perkin Trans.* 2, 1975, 675; W. K. Musker and P. B. Roush, *J. Am. Chem. Soc.*, 1976, 98, 6745; S. Oae and N. Kunieda, *Bull. Chem. Soc.*, 1962, 84, 4798.
- 4 T. Numata and S. Oae, Int. J. Sulfur Chem., 1971, 1, 6.
- 5 T. Yoshimura, T. Omata, T. Aida, N. Furukawa, and S. Oae, *J. Org. Chem.*, 1976, **41**, 1728. Cleavage of the S-NSO₂ bond has been reported: O. Bohman and S. Allenmark, *Tetrahedron Lett.*, 1973, 405